Truth-values as Labels: A General Recipe for Labelled Deduction

نویسندگان

  • Cristina Sernadas
  • Luca Viganò
  • João Rasga
  • Amílcar Sernadas
چکیده

We introduce a general recipe for presenting non-classical logics in a modular and uniform way as labelled deduction systems. Our recipe is based on a labelling mechanism where labels are general entities that are present, in one way or another, in all logics, namely truth-values. More specifically, the main idea underlying our approach is the use of algebras of truth-values, whose operators reflect the semantics we have in mind, as the labelling algebras of our labelled deduction systems. The “truth-values as labels” approach allows us to give generalized systems for multiplevalued logics within the same formalism: since we can take multiple-valued logics as meaning not only finitely or infinitely many-valued logics but also power-set logics, i.e. logics for which the denotation of a formula can be seen as a set of worlds, our recipe allows us to capture also logics such as modal, intuitionistic and relevance logics, thus providing a first step towards the fibring of these logics with many-valued ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labelled Deduction over Algebras of Truth-Values

We introduce a framework for presenting non-classical logics in a modular and uniform way as labelled natural deduction systems. The use of algebras of truth-values as the labelling algebras of our systems allows us to give generalized systems for multiple-valued logics. More specifically, our framework generalizes previous work where labels represent worlds in the underlying Kripke structure: ...

متن کامل

Labelled Natural Deduction for Substructural Logics

In this paper a uniform methodology to perform Natural Deduction over the family of linear, relevance and intuitionistic logics is proposed. The methodology follows the Labelled Deductive Systems (LDS) discipline, where the deductive process manipulates declarative units { formulas labelled according to a labelling algebra. In the system described here, labels are either ground terms or variabl...

متن کامل

Modal Sequent Calculi Labelled with Truth Values: Completeness, Duality and Analyticity

Labelled sequent calculi are provided for a wide class of normal modal systems using truth values as labels. The rules for formula constructors are common to all modal systems. For each modal system, specific rules for truth values are provided that reflect the envisaged properties of the accessibility relation. Both local and global reasoning are supported. Strong completeness is proved for a ...

متن کامل

Labeled Calculi and Finite-Valued Logics

A general class of labeled sequent calculi is investigated and necessary and su cient conditions are given for when such a calculus is sound and complete for a nite valued logic if the labels are interpreted as sets of truth values sets as signs Furthermore it is shown that any nite valued logic can be given an axiomatization by such a labeled calculus using arbitrary systems of signs i e of se...

متن کامل

Intuitionistic Letcc via Labelled Deduction

The well-known embedding of intuitionistic logic into classical modal logic means that intuitionistic logic can be viewed as a calculus of labelled deduction on multiple-conclusion sequents, where the labels are the Kripke worlds of the modal embedding. The corresponding natural deduction system constitutes a type system for programs using control operators such as letcc that capture the curren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Applied Non-Classical Logics

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003